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H-Li Inter-Atomic Potential
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•  H-Li potential combines:
 singlet ab initio potential [1,2]

 universal potential at small
distance

•  Spline b/w 0.37 Å ~ 0.7565 Å
•  Interaction Cutoff: 5 Å
•  Bond Min Distance:1.05 Å
•  Bond Max Distance: 3.60 Å
•  Bond Energy: 2.526 eV
•  Weight function [3] :

[1] N. Geum, et al., Interaction potentials of LiH, NaH, KH, RbH and CsH, J. Chem. Phys., 115 (2001) 5984.
[2] R. Cote, et al., Enhanced Cooling of Hydrogen Atoms by Lithium Atoms, Physical Review Letters, 84 (2000) 2806.
[3]  R. Taylor, et al., Molecular Dynamics Simulations of Reactions between Molecules, Langmuir, 11 (1995) 1220.

]
)(

cos[
2

1

2

1
)(

12

1

rr

rr
rfc

!

!
+=

"



Why Trust It?

[4]    K. Anderson, M. R. A. Blomberg, M. P. Fulscher et al., MOLCAS, Version 4, 1997, Lund University, Sweden.
[5]  American Institute of Physics (AIP), EPAPS http://www.aip.org/pubservs/epaps.html

• Based on the Inverted Perturbation Approach (IPA)
potential [1]

• Includes dispersion forces and exchange interactions
• Uses a large scale configuration interaction method
• Calculated by MOLCAS program [4], a specific

program used for molecular configuration-interaction
calculations

• Enable accurate predictions to be made of the
scattering of the alkali metal atoms by hydrogen
atoms [1,2]

• The resulting interaction potential is available to
public from AIP [5]



H-Li Inter-Atomic Force
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Spline Region
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Liquid Li-Li CGP Potential
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• The fluctuations around 5 Å
show the long-range
interaction
 Interaction Cutoff: 5.75 Å
 Bond Min Distance: 2.60 Å
 Bond Max Distance: 4.13 Å
 Bond Energy: 0.083 eV

[6]  Manel Canales, L. E. Gonzalez, J. A. Padro, Computer Simulation Study of
Liquid Lithium at 470 and 843K, Physical Review E, 50 (1994) 3656.



Why Trust This Li-Li Potential?

• Obtained from the Neutral Pseudoatom (NPA) method [6]

• Calculated by a specific MD group for liquid Li of Spain [6]

• Involving both structural and  thermodynamic properties
for liquid Lithium

• Reasonable agreement with available experimental data [6]

• Effective for high temperature ranging 470K ~ 843K



MolDyn Code

[7]  D. Beeman, J. Comp. Phys., 20 (1976) 130.
[8]  H. J. C. Berendsen, et al., J. Chem. Phys., 81 (1984) 3684.

• Molecular Dynamics code (MolDyn)
 Fixed timestep Beeman integrator [7]

 Berendsen method to control temperature [8]

 Modified to handle lithium/hydrogen systems
• Code configurations

 Time step: 0.1 fs
 Dimensions: 42Å x 42Å x 60Å (deep)
 Lattice size: 5040 Li atoms
 Time scale: run for 2000 fs
 Periodical side boundary and fixed bottom
 Cutoff: 5.75 Å for Li-Li & 5 Å for D-Li

• Creation of the pure hydrogenated liquid Li lattice
 Originally from BCC structure
 Slowly heated to required temperature

• Creation of the liquid Li lattice
 Initially build a pure lithium lattice at a concerned temperature
 Allows the development of a more realistic hydrogenated surface with

1000s of individual H/D impacts
 The generated H:Li surface is used as the input in all next subsequent runs

to calculate concerned info



Preparation of Liquid Li Surface
-- Surface Dimensions XZ
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• Surface dimension (x,z) must be
greater than twice cutoff (11.5Å)
 Insures that an atom does not interact

with an image of itself, and interacts with
only one image of every other atom

• We choose 42Å, about eight times of
cutoff distance as lattice surface
dimension

• Increasing x,z dimensions does not
affect incident ion trajectories

• Test for this XZ dimensions
• H_Li_300eV_θ45°_Φ45°_0K_dt0.1fs
• Got to be reflected in the end
• XZ=12a=42.201 Å seems to be good

enough



Preparation of Liquid Li Surface
 -- Depth Dimension
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• MAIDS implies the deepest sputtered atom comes from 40Å
• VFTRIM shows no effect on sputtering yield by making the depth

larger than ~40 Å
• Taking account for cascade effect, we choose 60Å as lattice depth



Preparation of Liquid Li Surface
-- Time Step
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 dt=0.05 fs
 dt=0.10 fs
 dt=0.12 fs
 dt=0.15 fs
 dt=0.20 fs

• dt > 0.1 fs gives an incorrect trajectory for a 300 eV H collision with a
Li surface atom

• dt <= 0.1 fs seems good enough to model the backscatter &
sputtering

• As a tradeoff (accuracy vs. CPU time), dt = 0.1 fs is a good choice



Creation of Pure Liquid Li Surface
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 0 K (reduced by 5x)

• Heat is added gradually over first 10,000 fs
• The surface is allowed to equilibrate for another 10,000 fs
• The radial distribution function of solid (BCC) structure is

discrete
• The oscillating radial distribution curves prove liquid property of

the created surfaces



Hydrogenated Liquid Li Surface

• Continuously incident H on the hydrogenated liquid
Li surfaces

• Detailed cases
 H_Li/LiH_20eV_ 45° _473K
 H_Li/LiH_20eV_ 45° _653K

• Results
 Sputtering and Reflection
 Hydride concentration H:Li
 Implantation characterization of H
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Lithium Hydride Concentration
• H:Li ratio in initial stage linearly

increases before saturation
• Saturation is not obtained due to

the insufficient time scale (2 ps)
• The actual concentration can not

stay at such a high level according
to the phase diagram with no H
pressure on surface

• H atoms preferably diffuse towards
the other H atoms within around
layers in similar depth, H-H bond
energy > Li-H bond energy.

• H atoms are more likely to bond
together with H atoms

• Thickness decreases due to
removal of sputtered Li atoms
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Sputtering Results on Pure Li Surface
-- Average Sputtered Energy
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• Surface temperature has little effect on energy of sputtered atoms in MD
• Incident angle seems not to effect the energy of the sputtered atoms
• MD and VF-TRIM & TRIM.SP show better agreement at low energies
• The average energy of the sputtered Li atoms is in the order of  several eV’s



Sputtered Energy Distribution
& Vapor Pressure
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• There are two peaks for the energy distribution of sputtered atoms
• Higher surface temperature leads to significantly increasing of

vaporization flux
• Low-energy peak corresponds to simulated-evaporation component
• Calculate vapor pressure of the liquid Li surface to see if it can be

seen in MD



Reflection Results on Pure Li Surface
-- Reflection Coefficient
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• Higher surface temperatures enhance reflection at moderate energies in MD
• Temperature effect is dominant at low energies and MD results with different

temperatures converge at high energies
• Larger incident angles enhance reflection as expected
• MD and VF-TRIM & TRIM.SP show better agreement at higher energies
• The MD results at low energies need more flights for a better statistics



Reflection Results on Pure Li Surface
-- Average Reflected Energy

50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

20
o

45
o

 

 

<
Ere

f
>

 /
 Ei

n
c

Incident Energy (eV)

 MD_653K
 MD_473K
 VF-TRIM
 TRIM.SP

 

 

• Average energy of the reflected H atoms is independent of
surface temperature

• Larger incident angles lead to larger average reflected
energy as expected

• MD and VF-TRIM & TRIM.SP show a range of 30% ~ 50%
for < Eref > / Einc



Sputtering Results of D on Pure liquid Li
Surface --  Sputtering Yield
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• Higher surface temperatures enhance erosion in MD code
• Larger incident angles enhance sputtering in MD code
• Surface temperature has strong effect on the sputtering of liquid Li
• MD in liquid Li gets sputtered more compared with VF-TRIM &

TRIM.SP in solid Li
• MD agrees with IIAX experimental data at high energy



Need for MD-TRIM
• BCA codes

 No concept of surface
temperature

 Cannot predict T
dependent
enhancement

• MD code
 Needs a better surface

potential
• MD-TRIM

 VFTRIM calculation with
• Recoil information

from MD
• SBE from MD

 Matches experimental
data
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Experimental and calculated sputtering yields
for lithium self-sputtering of 400 °C liquid
lithium at normal incidence.



Comparison of models
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Surface Potential

  [9]  Y. Li, E. Blaisten-Barojas and D. A. Papaconstantopoulos, Phys. Rev., B57 (1998-II) 519.
[10]  A. Rahman, Physical Review, 136 (1964) 405.

•  Current
  Surface Binding Energy (SBE) consistency
  Weighted surface potential acts ± 2.5Å on the

surface
  CGP potential [6] for all Li atoms

•  Future
  Cohesive Energy consistency
  LBP [9] (many-body) potential for bulk Li atoms
  LJ [10] + LBP potentials for Li in surface layers
  To make a smoother liquid Li surface
  Stratification along the depth



Future Modeling Work
• Develop a saturated LiH/LiD lattice and compare with the Li

phase diagram
• Study H/D incident on saturated LiH/LiD surface and

investigated the stability of the developed saturated LiH/LiD
lattice

• Compare results b/w liquid pure Li and LiH/LiD surfaces
• Develop a better surface potential with consisting to the

cohesive energy for the Li atoms within the surface layers
• Develop a better liquid Li surface with stratification structure

along depth
• Investigate the effects of higher temperature on the sputtering

and reflection which is leading to predict sputtering yield as a
function of surface temperature

• Return to carbon and mixed material modeling



Conclusions

• IIAX – producing new data on Sn
• FLIRE – making first measurements of

the retention of D from a plasma in a
realistic divertor geometry

• Modeling – endeavoring to understand
the experiments


